Modified Wavenumber Domain Algorithm for Three-dimensional Millimeter-wave Imaging

نویسندگان

  • S. Y. Li
  • B. L. Ren
  • H. J. Sun
  • W. D. Hu
  • X. Lv
چکیده

Millimeter-wave (MMW) imaging techniques have been used for the detection of concealed weapons and contraband carried on personnel at airports and other secure locations. The combination of frequency-modulated continuous-wave (FMCW) technology and MMW imaging techniques should lead to compact, light-weight, and low-cost systems which are especially suitable for security and detection application. However, the long signal duration time leads to the failure of the conventional stop-and-go approximation of the pulsed system. Therefore, the motion within the signal duration time needs to be taken into account. Analytical threedimensional (3-D) backscattered signal model, without using the stop-and-go approximation, is developed in this paper. Then, a wavenumber domain algorithm, with motion compensation, is presented. In addition, conventional wavenumber domain methods use Stolt interpolation to obtain uniform wavenumber samples and compute the fast Fourier transform (FFT). This paper uses the 3D nonuniform fast Fourier transform (NUFFT) instead of the Stolt interpolation and FFT. The NUFFT-based method is much faster than the Stolt interpolation-based method. Finally, point target simulations are performed to verify the algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compens...

متن کامل

Near-Field Three-Dimensional Planar Millimeter-Wave Holographic Imaging by Using Frequency Scaling Algorithm

In this paper, a fast three-dimensional (3-D) frequency scaling algorithm (FSA) with large depth of focus is presented for near-field planar millimeter-wave (MMW) holographic imaging. Considering the cross-range range coupling term which is neglected in the conventional range migration algorithm (RMA), we propose an algorithm performing the range cell migration correction for de-chirped signals...

متن کامل

A Novel Successive Cancellation Method to Retrieve Sea Wave Components from Spatio-Temporal Remote Sensing Image Sequences

In this paper, we consider retrieving individual wave components in a multi-directional sea wave model. To solve this problem, a currently and commonly used method is three-dimensional discrete Fourier transform (3D DFT) on the radar image sequence. However, the uniform frequency and the uniform wavenumber in a wavenumber frequency domain can not always strictly satisfy the dispersion relation,...

متن کامل

Three Dimensional Millimeter- and Terahertz-Wave Imaging Based on Optical Coherence Tomography

Three dimensional (3D) terahertz (THz) imaging or THz tomography has recently proven to be useful for non-destructive testing of industrial materials and structures. In place of previous imaging techniques such as THz pulse or continuous wave (CW) radar, we propose a THz optical coherence tomography (OCT) using frequency-swept THz sources, and demonstrate 3D imaging. In addition, we further app...

متن کامل

Distance Estimation of Concealed Objects with Stereoscopic Passive Millimeter-wave Imaging

Millimeter waves can be used to detect concealed objects because they can penetrate clothing. Therefore, millimeter wave imaging draws increasing attention in security applications for the detection of objects under clothing. In such applications, it is critical to estimate the distances from objects concealed in open spaces. In this paper, we develop a segmentation-based stereo-matching method...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012